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ABSTRACT
Given its broad applications, time series analysis has gained sub-
stantial research attention but remains a very challenging task.
Recent years have witnessed the great success of deep learning
methods, e.g., CNN and RNN, in time series classification and fore-
casting, but heterogeneity as the very nature of time series has not
yet been addressed adequately and remains the performance “tread-
stone”. In this light, we argue that the intra-sequence nonstationarity
and inter-sequence asynchronism are two types of heterogeneities
widely existed in multiple times series, and propose a hybrid at-
tention network called WHEN as deep learning solution. WHEN
features in two attention mechanisms in two different modules. In
the WaveAtt module, we propose a novel data-dependent wavelet
function and integrate it into the BiLSTM network as the wavelet
attention, for the purpose of analyzing dynamic frequency com-
ponents in nonstationary time series. In the DTWAtt module, we
transform the dynamic time warping (DTW) technique into the
form as the DTW attention, where all input sequences are synchro-
nized with a universal parameter sequence to overcome the time
distortion problem in multiple time series. WHEN with the hybrid
attentions is then formulated as task-dependent neural network for
either classification or forecasting tasks. Extensive experiments on
30 UEA datasets and 3 real-world datasets with rich competitive
baselines demonstrate the excellent performance of our model. The
ability of WHEN in dealing with time series heterogeneities is also
elaborately explored via specially designed analysis.
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• Mathematics of computing → Time series analysis; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
Time series data analysis, including time series classification (TSC)
and time series forecasting (TSF), is a long-standing and critically
important task for industrial, medical, business, and scientific ap-
plications [17]. While tremendous algorithms have been proposed
elaborately for time series analysis (TSA), high-performance classi-
fication and forecasting are still the targets particularly sought by
academia and industries, especially when facing newly emerging
real-world hypercomplex and highly dynamic time series.

Traditional algorithms for time series analysis usually create
hand-crafted features or distances based on original time series
and apply machine learning models to classification or forecasting,
such as ARIMA with series differences for TSF [27], and 𝑘-NN with
DTW distance for TSC [34]. Besides, some frequency transform and
frequent pattern mining methods, such as Fourier transform [51],
wavelet transform [32] and shapelet [45], can also extract shallow
features from time series for subsequent classification or forecasting
applications.

In recent years, with the booming of deep learning concept, var-
ious types of deep neural network models have been introduced
to TSA and achieved great success [22]. Compared with the above-
mentioned shallow feature based methods, deep learning models
can automatically learn complex nonlinear features from large-scale
and high-dimensional time series data, and therefore gain drastic
attention and are widely used in real-world applications. For exam-
ple, Recurrent Neural Networks (RNN) that are originally designed
for general sequential data processing have been employed for time
series forecasting [56]. While embodying some advantages, these
methods are not designed purposely for time series, and therefore
might not fully exploit the potential of deep learning in TSA. Par-
ticularly, the very nature of time series, i.e., the heterogeneity along
the timesteps or among different dimensions, has not been modeled
adequately, which indeed motives our study.

In light of this, we propose to explore the heterogeneity of real-
life time series and design customized deep learning models for
high-performance TSA. We argue that two intractable and widely
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(a) Intra-sequence nonstationarity in a time series.
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(b) Inter-sequence asynchronism between two time series.
Figure 1: Example of two types of heterogeneities in ECG
signals (source: AtrialFibrillation in UEA datasets).

existed phenomena, namely Intra-sequence Nonstationarity and
Inter-sequence Asynchronism, embody important heterogeneities of
multiple time series. The intra-sequence nonstationarity originates
from the fact that different parts of a time series have inherently
heterogeneous properties, such as mean, variance, frequency com-
ponents, etc. Fig. 1(a) gives an example about the ECG time series,
where the QRS-complex parts (with high-change frequencies and
amplitudes) and the T-wave parts (with low-change frequencies and
amplitudes) have obviously heterogeneous frequency components.
Traditional deep models often use the same repetitive structures,
such as repetitive convolution kernels in CNN and recursive units
in RNN, to process heterogeneous components of time series and
thus cannot deal with this problem well. The Inter-sequence Asyn-
chronism refers to the out-of-sync phenomenon among time series,
which might be caused by heterogeneous sampling rate or phase
perturbation. As the example shown in Fig. 1(b), the two ECG time
series in a same class are very likely to be categorized into different
classes for having different sampling rates and initial phases. This
is a common phenomenon in time series classification, and tradi-
tionally, can be adjusted using the Dynamic Time Warping (DTW)
algorithm [10]. However, in deep learning models we yet have no
special mechanism to deal with this problem.

To meet the above challenges, we propose the so-called Wavelet-
DTW Hybrid attEntion Networks (WHEN) for multiple heteroge-
neous time series analysis. WHEN is essentially a hybrid attention
network that integrates both wavelet transform and the DTW algo-
rithm as attentions for heterogeneity learning. The framework of
WHEN is shown in Fig. 2, which contains two core modules. The
key component of the WaveAtt module is the novel Data-dependent
Wavelet Attention, where a wavelet function with data-dependent

frequency band parameters is integrated with the BiLSTM net-
work as an attention. This module can reduce the problem of intra-
sequence nonstationarity through dynamically extracting hetero-
geneous frequency components of input sequences. The DTWAtt
module features in a Local Dynamic Time Warping Attention, where
the DTW algorithm is implemented as an attention to synchro-
nize the input sequences with a universal feature sequence and a
multi-head attention. This module is proposed to handle the inter-
sequence asynchronism problem. The two modules are connected
as a pipeline using task-dependent neural networks (TD-NN-1 and
TD-NN-2) for either time series classification or forecasting tasks
in an end-to-end manner.

The superiority ofWHEN is verified empirically over 30 standard
time series datasets for time series classification and over 3 real-
world datasets for forecasting, with the presence of rich competitive
baselines. To the best of our knowledge,WHEN is the first study that
considers both nonstationarity and asynchronism heterogeneous
problems of time series analysis within a deep leaning framework.

2 RELATEDWORK
Heterogeneous Time Series Analysis. In this paper, we con-
sider two types of heterogeneous problems in time series analysis,
i.e., non-stationary and asynchronous. Some previous works also
study those problems. The traditional approaches to handle the
non-stationary problems is using handcrafted transform methods
to convert non-stationary time series as stationary statistics, such
as time series detrending method [33], time series differencing [20],
mapping-based models [27, 46, 67], splitting-based models [2, 3, 61]
etc. However, for complex, high dimensional and noisy real-world
time series data, the non-stationary features could be heteroge-
neous and dynamic. It is very hard to deal with these challenging
conditions for the static handcrafted methods. Deep sequential mod-
els such as LSTM [50, 56] and Transformer [60] can automatically
learn representation from complex sequential data, therefore have
great potential to overcome the shortage of handcrafted methods in
non-stationary time series analysis. In recent works, NsTKA [42]
proposed a kernelized attention method to solve temporal event
prediction problem of non-stationary time series. mWDN incor-
porates the multilevel discrete Wavelet decomposition with deep
neural networks to achieve frequency analysis in complex time
series [65]. For the asynchronous problem, the traditional approach
is using the DTW algorithms to rectify the asynchronism among
time series, however, which is not compatible to the deep learning.
To the best of our knowledge, WHEN is the first deep learning
model that is designed purposefully for both non-stationary and
asynchronous problem in the heterogeneous time series analysis.

Time Series Classification (TSC). As a major type of time se-
ries analysis task, traditional TSC methods include three major cat-
egories: distance based methods, feature based methods and ensem-
ble methods. Dynamic time warping (DTW) and its variants [10, 34]
are the most popular kind of distance based classification meth-
ods, combined with the 𝑘-Nearest Neighbor algorithm. Feature
based methods consider special features for time series including
bag of patterns [40], bag of SFA symbols [51], convolution kernel
features [19, 59] and time series forest [8], etc. Ensemble methods
aim to combine the advantages of different methods, including
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Figure 2: Framework of the WHEN model.

elastic ensemble [41], COTE [5], etc. Traditional methods usually
depend on handcrafted features such as distance and difference, and
therefore are not adequate for large and complex datasets. In the
recent, deep neural networks begin to automatically learn complex
features in TSC, including supervised feature mining [24], unsuper-
vised feature learning [23], transformer methods [15, 48, 49, 68],
etc. Although deep learning methods can generate abundant fea-
tures for classification with the aid of its representational learning
ability, some unique features in time series such as warping dis-
tance and frequency cannot be explicitly learned by neural network
automatically.

Time Series Forecasting (TSF). Themajor function of TSFmod-
els is exploiting autoregressive correlations in time series. A classic
TSF model for non-stationary time series is ARIMA [27], which
considers detrending with a moving average (MA) process and dif-
ferences time series with an order of differences. Frequency analysis
is also an important tool that is usually used in TSF models [57].
Recently, deep learning has become the state-of-the-art method in
time series forecasting [1, 12, 18, 28–31, 44, 47, 53, 54, 62–64, 66, 70].
Dynamic programming based differentiable DTW methods are also
used in TSF task [16, 36–38], while our DTWAtt uses attention form
differentiable DTW which better suits the deep learning environ-
ment. Similar as in the deep learning based TSC models, there are
rare works that can incorporate heterogeneous time series targeted
features with deep learning as the proposed model in this work.

3 DATA-DEPENDENTWAVELET ATTENTION
In this section, we introduce one key component of our WHEN
model:WaveAtt, which is a wavelet attention enabled representa-
tion learning module with BiLSTM as the basic framework.

3.1 Wavelet-based Frequency Analysis
The intra-sequence nonstationarity problem is fundamentally caused
by the different parts of a time series having different inherent prop-
erties. Frequency is one of the most important inherent property
in time series. Theoretically, any time series could be decomposed
into a set of frequency components. For a time series with intra-
sequence nonstationarity, its frequency components are expected
to be diverse and thus could be disclosed by frequency analysis. We
therefore adopt a classic frequency analysis tool, i.e., theWavelet
Transform [26], to analyze the nonstationarity of time series. In this
subsection, we first give a brief introduction to wavelet transform.

The wavelet transform expresses a sequential signal by a set of
wavelet bases, which are generated from a basic local frequency
function, i.e., the mother wavelet function. Given a mother wavelet
function𝜓 (𝑡), the bases are defined as

𝜓𝛼,𝜏 (𝑡 ) =
1
√
𝛼
𝜓

( 𝑡 − 𝜏
𝛼

)
, (1)

Data-dependent Wavelet                         

(High Frequency)

Data-dependent Wavelet                         

(Low Frequency)

Figure 3: Model procedure of WaveAtt.

where 𝛼 ∈ R+ is a dilated scalar, which controls the frequency band
( 1𝛼 ) of a basis. 𝜏 ∈ R is a shift, which translates the mother function
from 𝑡 to 𝑡 − 𝜏 , controlling the location of the basis to extract
frequency information. Different types of mother functions can
be used to generate the wavelet bases, and each defines a wavelet
family. The typical mother wavelet functions include Haar, Mexica
hat, Coiflets, Meyer, etc [43].

Given a sequential signal 𝑓 (𝑡) and the base𝜓𝛼,𝜏 (𝑡), the wavelet
transform extracts its frequency component as

𝑟𝛼,𝜏 =

∫ +∞

−∞
𝑓 (𝑡 ) 1

√
𝛼
𝜓

( 𝑡 − 𝜏
𝛼

)
d𝑡, (2)

where 𝑟𝛼,𝜏 is the component intensity of the frequency band 1
𝛼

at the location 𝜏 . In this way, we can extract the component of a
sequential signal for any frequency at any location by adjusting
the parameters 𝛼 and 𝜏 .

While wavelet transform can extract important frequency infor-
mation of a time series, it cannot be directly applied to our model
for non-stationary time series analysis. The first challenge comes
from the intra-series nonstationarity of most real-life time series
data, which have diverse frequencies that are essentially dynamic
over time. This implies that we’d better set the frequency band
parameter 𝛼 dynamically for each time step, but the frequency band
given in Eq. (2) is fixed for the entire time series and cannot well
capture the dynamics in frequency. Traditional methods often set
𝛼 manually to go through all possible integers for full frequency
bands coverage, which is obviously inefficient. The second chal-
lenge comes from the end-to-end learning purpose of our model,
which requires to integrate the wavelet transform into a general
deep learning framework. We address these below.

3.2 Data-dependent Wavelet Attention for
Dynamic Frequency Analysis

Here, we devise a novel data-dependent wavelet attention mecha-
nism (WaveAtt) for dynamic frequency analysis. As mentioned in
Eq. (1), the parameter 𝛼 controls the frequency band of wavelet
transform, which is often set manually to go through all possi-
ble integers for full frequency bands coverage. As a result, many
meaningless frequency components might be extracted. As shown
in Fig. 3, in our WaveAtt module, we propose a data-dependent
mechanism to adaptively adjust 𝛼 for different steps of time.

The input of the WaveAtt module is a multivariate time series
defined as 𝑿 = (𝒙1, 𝒙2, . . . , 𝒙𝑖 , . . . , 𝒙𝐼 )⊤, where 𝒙𝑖 ∈ R𝐾𝑋 is a 𝐾𝑋
dimensional vector. We adopt the Bidirectional Long Short Term
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Memory (BiLSTM) [25] network to encode 𝑿 as a hidden state
sequence 𝑺 = (𝒔1, . . . , 𝒔𝑖 , . . . , 𝒔𝐼 ). The major benefit of BiLSTM is
that it can capture both forward and backward temporal depen-
dencies, while unidirectional RNN models can only capture the
forward temporal dependencies. Such a benefit is important for
many time series applications especially for our wavelet attentions
since the temporal dependencies in frequency components are not
only unidirectional. Moreover, with the BiLSTM encoding layer,
the correlations among different dimensions of the input sequence
𝑿 could also be exploited.

The input of WaveAtt is the 𝐾𝑆 dimensional sequence 𝑺 gen-
erated by the BiLSTM layer. We denote the 𝑘-th dimension of 𝑺
as 𝝇 (𝑘 ) =

(
𝑠
(𝑘 )
1 , . . . , 𝑠

(𝑘 )
𝑖
, . . . , 𝑠

(𝑘 )
𝐼

)
. Given a sliding window of length

2𝐿 + 1, we extract a sub-sequence of 𝝇 (𝑘 ) centered on time step 𝑖 as

𝝇 (𝑘 )
𝑖

=

(
𝑠
(𝑘 )
𝑖−𝐿, . . . , 𝑠

(𝑘 )
𝑖−1, 𝑠

(𝑘 )
𝑖
, 𝑠

(𝑘 )
𝑖+1 , . . . , 𝑠

(𝑘 )
𝑖+𝐿

)
, (3)

which is the basic unit for dynamic frequency analysis in WaveAtt.
In what follows, we omit the dimension mark 𝑘 in variables for
concise description when there is no conflict.

We then set the parameter 𝛼 as a function of 𝝇𝑖 as follows:

𝛼 (𝝇𝑖 ) = ReLU

(
𝑤𝑏 +

𝐿∑︁
𝑙=−𝐿

𝑤𝑙 · 𝑠𝑖+𝑙

)
+ 𝜖, (4)

where the vectors𝒘 = (𝑤−𝐿, . . . , 𝑤𝐿,𝑤𝑏 )⊤ are trainable parameters.
ReLU(·) is a Rectified Linear Unit activation function and 𝜖 is a small
value so that 𝛼 will be positive. Next, we define a data-dependent
wavelet function to extract frequency information from the sub-
sequence 𝝇𝑖 , which is given by

𝜓𝝇𝑖 (𝑡 ) =
1√︁

𝛼 (𝝇𝑖 )
𝜓

(
𝑡 − 𝑖
𝛼 (𝝇𝑖 )

)
. (5)

Compared with the standard wavelet mother function in Eq. (1),
the data-dependent wavelet has two obvious differences. One is to
replace the fixed 𝛼 by the data dependent 𝛼 (𝝇𝑖 ), and the other is to
set 𝜏 = 𝑖 to shift the center of the mother wavelet function to the 𝑖-th
time step. These together enable the extraction of data-dependent
frequency information for each time step.

The purpose of setting 𝛼 as a function of 𝝇𝑖 is to let the frequency
band of the wavelet function varies adaptively with the input se-
quential data. Meanwhile, the model only extracts the most suitable
band rather than full-band frequency components. For different in-
put data in a sliding window, the frequency bands are also different,
so we call the wavelet function in Eq. (5) as data-dependent wavelet.
This benefit is very important for analyzing non-stationary time
series with heterogeneous frequency components. Moreover, the
dilated scalar 𝛼 (𝝇𝑖 ) can also be a non-integer, which can further
improve the precision of frequency analysis.

After generating the data-dependent Wavelet function 𝜓𝝇𝑖 (𝑡)
using Eq. (5), we use it to generate a group of attention weights as

ATT
(
𝜓𝝇𝑖 (𝑡 )

)
=

𝜓𝝇𝑖 (𝑡 )∑𝑖+𝐿
𝜏=𝑖−𝐿

��𝜓𝝇𝑖 (𝜏 )
�� . (6)

Next, the attentions are integrated with the BiLSTM’s outputs as

𝑟𝑖 =

𝑖+𝐿∑︁
𝑡=𝑖−𝐿

ATT
(
𝜓𝝇𝑖 (𝑡 )

)
· 𝑠𝑡 , (7)

which could be considered as attention form expression of Eq. (2).
The output 𝑟𝑖 is the frequency component of 𝝇 (𝑘 )

𝑖
extracted by

𝜓𝝇𝑖 (𝑡). Since Eq. (7) could be considered as paying attention to 𝝇𝑖
using wavelet frequency as weights, we call it theWavelet Attention.

We denote 𝑟 (𝑘 )
𝑖

as the frequency component of 𝝇 (𝑘 )
𝑖

. For the
𝐾𝑠 dimensions of 𝒔𝑖 , we have a frequency component vector 𝒓𝑖 =(
𝑟
(1)
𝑖
, . . . , 𝑟

(𝐾𝑆 )
𝑖

)⊤
. In order to increase the diversity of frequency

components, we adopt multiple wavelet families to implement the
data-dependent wavelet function. Given Γ wavelet families, the
frequency components at time step 𝑖 grow into a matrix 𝑹𝑖 =(
𝒓𝑖,1, . . . , 𝒓𝑖,Γ

)
. As a result, the matrix sequence R = (𝑹1, . . . , 𝑹𝑖 ,

. . . , 𝑹𝐼 ) is the final output of WaveAtt in our model.

4 DYNAMIC TIMEWARPING ATTENTION
In this section, we introduce another key component of our WHEN
model: DTWAtt, which is essentially a neuralized dynamic time
warping to deal with the asynchronism problem among time series.

4.1 Dynamic Time Warping
We begin by briefly introducing Dynamic Time Warping (DTW),
which is an algorithm for measuring similarity between two tempo-
ral sequences. It can align two temporal sequences non-linearly in
time dimension, and therefore is very suitable to two asynchronous
time series with different phase positions and sampling rates.

To keep the notations consistent, we use sequences of vectors
with a same number of dimensions as example to explain the DTW
algorithm. Given two sequences 𝑷 = (𝒑1, . . . ,𝒑𝑚, . . .𝒑𝑀 ), 𝑸 =

(𝒒1, . . . , 𝒒𝑛, . . . , 𝒒𝑁 ), the DTW algorithm [55] calculates a warping
path as a sequence whose elements are pairs of vectors in 𝒑 and 𝒒,

𝐻 =

( (
𝒑𝑚1 , 𝒒𝑛1

)
, . . . ,

(
𝒑𝑚𝑧 , 𝒒𝑛𝑧

)
, . . . ,

(
𝒑𝑚𝑍 , 𝒒𝑛𝑍

) )
, (8)

where the subscript indexes satisfy:𝑚1 = 𝑛1 = 1;𝑚𝑍 = 𝑀 , 𝑛𝑍 = 𝑁 ;
0 ≤ 𝑚𝑧+1 −𝑚𝑧 ≤ 1, 0 ≤ 𝑛𝑧+1 − 𝑛𝑧 ≤ 1. A warping path can also be
viewed as a path from position (1, 1) to (𝑀, 𝑁 ) in a𝑀 × 𝑁 matrix.

Given the warping path𝐻 of the sequences 𝒑 and 𝒒, the distance
between the two sequences in DTW is calculated as

𝑑𝐻 =

𝑍∑︁
𝑧=1

𝒑𝑚𝑧 − 𝒒𝑛𝑧
 , (9)

where ∥ · ∥ is the 𝑙-2 norm. Let H be all possible warping paths
between 𝑷 and 𝑸 . The DTW algorithm finds the path 𝐻∗ with the
shortest distance between the two sequences, i.e.,

𝐻 ∗ = argmin
𝐻 ∈H

𝑑𝐻 . (10)

The distance of 𝐻∗, i.e., 𝑑∗ = 𝑑𝐻 ∗ , is a measurement of similarity
between 𝑷 and 𝑸 .

The advantage of warping path is its ability in aligning samples
of two sequences in a non-linear way. For a pair (𝒑𝑚𝑧 , 𝒒𝑛𝑧 ) in a
warping path 𝐻 , the two elements have the same order index 𝑧 but
could have different temporal indexes, i.e.,𝑚𝑧 ≠ 𝑛𝑧 . For example,
for a sub-sequence (𝒑1,𝒑2,𝒑3,𝒑4), its counterpart in warping path
could be (𝒒1, 𝒒1, 𝒒1, 𝒒2). In this way, the time axis of the sequence
𝑷 looks like be “warped” from the view of the sequence 𝑸 . More-
over, the warping path could also be generated from two unequal
length sequences, e.g., a sequence and its down sampling sequence.
This feature is very useful for handling the asynchronism problem
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Figure 4: Model procedure of DTWAtt.

between different time series caused by dynamic sampling rate or
phrase disturbance.

DTW distance is particularly valuable to reduce the modelling
errors derived from asynchronism among time series. Recall the
two example sequences in Figure 1(b), they are similar in shape but
with different time scales and thus might be misclassified, e.g., by
the simple 𝑘-Nearest Neighbor (KNN) model, into different classes.
With the DTW distance, however, the situation could be quite
opposite. This illustrates why we aim to introduce DTW to our
time series analysis model. Nevertheless, the current computation of
DTW could not be directly applied to our model. How to integrate
the DTW component into a deep learning framework is still a
challenge. In what follows, we propose a DTW and attentions
combined network structure, called Local Dynamic Time Warping
Attentions (DTWAtt), to leverage features of DTW in our deep
learning model.

4.2 Local Dynamic Time Warping Attentions
In the DTWAtt model, we first feed the output sequence of the
WaveAtt model, i.e., R = (𝑹1, . . . , 𝑹𝑖 , . . . , 𝑹𝐼 ), into a task-dependent
neural network to generate a vector sequence 𝑽 = (𝒗1, . . . , 𝒗𝑖 , . . . , 𝒗𝐼 ),
where 𝒗𝑖 is generated by 𝑹𝑖 and has 𝐾𝑉 dimensions. The structure
of the task-dependent neural network is given in Section 3.3. Next,
we define a vector sequence 𝑼 , named as the Universal Feature Se-
quence, which is a learnable parameter sequence and has the same
dimension as 𝑽 (i.e.,𝐾𝑉 ). The idea of DTWAtt is to calculate warped
attentions of 𝑽 to the universal feature sequence 𝑼 using the DTW
distance.

As shown in Fig. 4, to adapt to the dynamic nature of time se-
ries, we adopt another sliding window over the input sequence 𝑽 .
Assume the window size is 𝐿 + 1, the sub-sequence of 𝑽 in the win-
dow is 𝑽𝑖 = (𝒗𝑖 , 𝒗𝑖+1, . . . , 𝒗𝑖+𝐿), which is the basic unit for the local
time warping attention centered on time step 𝑖 . We accordingly
extract a vector sequence 𝑼𝑖 from 𝑼 with the same length 𝐿 + 1
as 𝑼𝑖 = (𝒖𝑖 , 𝒖𝑖+1, . . . , 𝒖𝑖+𝐿). The distances of all possible warping
paths between 𝑼𝑖 and 𝑽𝑖 are therefore calculated as

𝒅 (𝑽𝑖 ,𝑼𝑖 ) =
(
𝑑1 (𝑽𝑖 ,𝑼𝑖 ) , . . . , 𝑑𝑔 (𝑽𝑖 ,𝑼𝑖 ) , . . . , 𝑑𝐺 (𝑽𝑖 ,𝑼𝑖 )

)
. (11)

Since we limit the length of 𝑼𝑖 and 𝑽𝑖 using a sliding window, the
computation complexity for warping paths traversal is acceptable
(the window size is set to 4 in the experiments).

Similar as the DTW algorithm, the DTWAtt network also focuses
on finding the short warping path to measure the distance between
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Figure 5: Model Framework for WHEN.

two sequences. To ensure the DTWAtt structure is compatible to
the deep learning framework, we adopt an attention method to
implement DTW. Specifically, we calculate the attention weight of
each warping path using a SoftMax normalization as

ATT
(
𝑑𝑔

)
=

exp
(
−𝑑𝑔

)∑𝐺
𝑗=1 exp

(
−𝑑 𝑗

) . (12)

Obviously, the warping path with a shorter𝑑𝑔 has a largerATT
(
𝑑𝑔

)
since we multiply −1 with 𝑑𝑔 in the SoftMax. Next, we use the
attention weight ATT

(
𝑑𝑔

)
to sum the distance in 𝒅 (𝑽𝑖 , 𝑼𝑖 ) as

𝑏 =

𝐺∑︁
𝑔=1

ATT
(
𝑑𝑔

)
𝑑𝑔 . (13)

The output 𝑏 is distance between 𝑽𝑖 and 𝑼𝑖 , so is better denoted
as 𝑏𝑖 . In Eq. (13), the warping paths with shorter 𝑑𝑔 would be paid
more attention to, which is indeed similar to the DTW algorithm
but implemented in a differentiable way.

In DTWAtt, we also adopt a multi-head attention mechanism
to calculate the distance of 𝑽 with multiple universal feature se-
quences. Given 𝑁 parameter sequencesU = (𝑼 (1), . . . , 𝑼 (𝑁 )), the
output of DTWAtt is a vector sequence 𝑩 = (𝒃1, . . . , 𝒃𝐼 ), where
the 𝑛-th element of 𝒃𝑖 is the distance of 𝑽𝑖 to 𝑼 (𝑛)𝑖 measured by
DTWAtt.

Intuitively, the DTWAtt is a neural network version of DTW
that calculates the distance between the input sequence 𝑽 with the
parameter sequence 𝑼 through an attention-like approach. DTWAtt
could be considered as synchronizing any input sequence 𝑽 with a
universal feature sequence 𝑼 . The error caused by disturbances in
sampling rate and phrase could be calibrated by synchronization
mechanism. Moreover, DTWAtt is differentiable and thus can be
plugged into a neural network and be trained by the BP algorithm.
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4.3 The Model Output Layer
The WHEN model could be used for a wide variety of time series
analysis tasks, such as Time Series Classification (TSC) and Time
Series Forecasting (TSF). As shown in Fig. 2, in the WHEN model,
the WaveAtt and DTWAtt modules were connected as a pipeline by
two task-dependent neural networks (TD-NN). We design different
TD-NN and output layers for the two tasks below.

For the TSC task, as illustrated in Fig. 5 (a), the TD-NN-1 con-
tains two 1D convolutional layers. One consists of 128 convolution
kernels in the size of 3 and the other consists of 32 convolution
kernels in the size of 5. In the TD-NN-2, the outputs of WaveAtt
and DTWAtt are respectively connected with a 1D convolutional
layers consisting of 16 convolution kernels in the size of 3. We use
the average pooling to convert outputs of the 1D convolutional
layers as two vectors, and concatenate them as input of a fully
connected layer with SoftMax classification outputs. For all the con-
volutional layers, we use ReLU as the active function and execute
batch normalization for each layer.

For the TSF task, as illustrated in Fig. 5 (b), we use a LSTM net-
work with 128 units as TD-NN-1, where the frequency sequence
R generated by WaveAtt is converted as the input sequence 𝑽 of
DTWAtt. The TD-NN-2 uses the other LSTM network with 128
units to convert the output sequence DTWAtt as a vector and con-
catenates it with the last hidden state of LSTM in TD-NN-1. The
concatenated vector is fed into a fully connected layer as the output.
The active function of the LSTM networks is ReLU too.

We use a convolutional neural network as TD-NN of the classi-
fication task since the information for all parts of a time series is
theoretically equally important. Oppositely, the information in the
segment that is closer to “current” is more important for forecast-
ing, so we adopt a unidirectional LSTM network as TD-NN of the
forecasting tasks.

5 EXPERIMENTS
In this section, we evaluate the performance of WHEN over both
time series classification and time series forecasting tasks.

5.1 Task I: Time Series Classification
In time series classification tasks, a multivariate time series 𝑿 ∈
R𝐾×𝐼 is used as the model input to predict a classification label.

5.1.1 Datasets. We evaluate our model on the UEA multivariate
time series classification archive [4], which is a large size multi-
variate time series dataset covering the areas of Human Activity
Recognition, Motion classification, ECG classification, EEG/MEG
classification, Audio Spectra classification, and among others. The
UEA archive is designed to provide a standard archive for multi-
variate time series classification. In this way, we can compare the
performance of our model with the baselines over a standard setup.

We use all 30 datasets of the UEA archive in our experiments.
The sample sizes of the datasets are in the range of 27 - 50000, the
series lengths are in 8 - 17984, and the dimensions are in 2 -1345.

5.1.2 Baselines. Eight baseline methods are adopted for the com-
parative experiments, including a DTW-based algorithm, a pattern-
based algorithm, a feature-based algorithm, two ensemble methods,
two deep learningmodels, and a wavelet-based deep learningmodel.

All of them achieved the state-of-the-art performance in the recent
literature.

• DTW𝐷 [55]: A classifier based on 1-Nearest Neighbor with
dimension-dependent DTWdistance function. The 1-NNwith DTW
was ever the state-of-the-art algorithm of univariate time series
classification [34]. For multivariate time series classification, the
DTW-based algorithm also showed notable performance and was
reported to achieve the best performance over UEA in Ref. [4].

• WEASEL+MUSE [52]: A bag-of-pattern multivariate time se-
ries classification algorithm, which achieved the state-of-the-art
performance compared with the competitors of the same type on
multivariate time series datasets [7]. We select it as the representa-
tive baseline of the pattern-based algorithms.

• CMFMTS+RF [6]: A classifier based on a set of complexity
measures and descriptive features with random forest. We select it
as a representative of ensemble methods for it achieved the state-
of-the-art performance on the UEA datasets in Ref. [6].

• LCEM [21]: A hybrid ensemble method that combines boosting-
bagging, divide-and-conquer and decision tree. It outperformed
other random forest competitors such as RFM and XGBM on UEA
datasets in Ref. [21]. We select it as anther representative of ensem-
ble methods.

• TapNet [69]: A deep learning model for multivariate time series
classification with attentional prototype network. The algorithm
extracts low-dimensional features from multivariate time series
with limited training samples. It achieved the best performance
over the UEA datasets compared with other deep learning models
in Ref. [69]. We select it as a representative of deep learning models.

• TST [68]: Time Series Transformer, a transformer-based frame-
work for multivariate time series representation learning, which
is a state-of-the-art deep learning model for many sequential data
analysis tasks. TST is a representative transformer method in time
series modeling.

• MINIROCKET [19]: A state-of-the-art model which extracts
time series features with convolution kernels for better classifica-
tion. With the help of ridge regression classifier, MINIROCKET
performs well among several traditional methods in time series
classification [19]. We select it as the representative baseline of the
feature-based methods with ridge regression classifier.

• mWDN [65]: A deep learning model that employs a multilevel
Wavelet decomposition neural network to extract frequency infor-
mation form time series. This method shares similar idea with our
WaveAtt module, but was designed just for univariate time series
and can only extract features for several fixed frequency bands. We
modify mWDN to fit our experiments by treating a multivariate
series as multiple separate univariate series.

We also adopt two variants of WHEN as baselines, which are
WaveAtt and DTWAtt. WaveAtt uses only the WaveAtt module
of our model for classification while DTWAtt only uses the DT-
WAtt module. For baselines that have been evaluated over the UEA
datasets in extant papers, we directly adopt the best scores from
the papers for comparison.

5.1.3 Results and Analysis. We adopt classification accuracy as a
metric to evaluate the model performance, which is defined as
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1

𝑁

∑𝑁
𝑛=1 1 (𝑦𝑛 = 𝑓 (𝒙𝑛 ) ) , where 𝑦𝑛 is the class of the

time series 𝑥𝑛 , and 1(·) is an indicative function which equal to 1
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Table 1: Performance comparison in the time series classification task.

Datasets DTWD
WEASEL TapNet LCEM CMFMTS mWDN TST MINI WaveAtt DTWAtt WHEN+MUSE +RF ROCKET

ArticularyWordRecognition 0.987 0.993 0.993 0.993 0.990 0.990 0.987 0.990 0.993 0.983 0.993
AtrialFibrillation 0.200 0.333 0.333 0.467 0.200 0.400 0.400 0.400 0.467 0.400 0.467

BasicMotions 0.975 1 1 1 0.975 1 1 1 1 1 1
CharacterTrajectories 0.990 0.990 0.997 0.979 0.971 0.994 0.994 0.991 0.991 0.995 0.996

Cricket 1 0.986 0.986 0.986 0.972 0.972 0.986 0.986 0.986 1 1
DuckDuckGeese 0.600 0.575 0.600 0.375 0.520 0.600 0.660 0.640 0.600 0.680 0.700

EigenWorms 0.618 0.890 0.824 0.527 0.885 0.817 0.794 0.962 0.863 0.901 0.893
Epilepsy 0.964 0.993 0.964 0.986 1 0.949 0.971 1 0.993 0.993 0.993

ERing 0.133 0.133 0.133 0.200 0.930 0.930 0.948 0.981 0.933 0.893 0.959
EthanolConcentration 0.323 0.316 0.361 0.372 0.335 0.445 0.326 0.475 0.407 0.399 0.422

FaceDetection 0.529 0.545 0.556 0.614 0.548 0.615 0.689 0.620 0.610 0.635 0.658
FingerMovements 0.530 0.540 0.600 0.590 0.520 0.580 0.550 0.530 0.600 0.610 0.660

HandMovementDirection 0.231 0.378 0.378 0.649 0.284 0.568 0.595 0.378 0.419 0.351 0.554
Handwriting 0.607 0.531 0.388 0.287 0.282 0.305 0.359 0.511 0.431 0.566 0.561

Heartbeat 0.717 0.727 0.751 0.761 0.766 0.737 0.776 0.766 0.771 0.766 0.780
InsectWingbeat 0.115 0.128 0.222 0.228 0.640 0.656 0.687 0.633 0.640 0.650 0.657
JapaneseVowels 0.949 0.978 0.968 0.978 0.876 0.981 0.997 0.984 0.989 0.986 0.995

Libras 0.872 0.894 0.900 0.772 0.867 0.906 0.861 0.917 0.928 0.922 0.933
LSST 0.551 0.628 0.597 0.652 0.652 0.550 0.571 0.652 0.575 0.618 0.663

MotorImagery 0.500 0.500 0.590 0.600 0.510 0.540 0.540 0.550 0.600 0.620 0.630
NATOPS 0.883 0.883 0.939 0.916 0.817 0.950 0.933 0.928 0.967 0.972 0.978
PEMS-SF 0.711 0.705 0.751 0.942 1 0.890 0.896 0.827 0.884 0.902 0.925
PenDigits 0.977 0.969 0.980 0.977 0.951 0.987 0.981 0.979 0.963 0.982 0.987
Phoneme 0.151 0.190 0.175 0.288 0.287 0.178 0.180 0.289 0.278 0.271 0.293

RacketSports 0.803 0.914 0.842 0.941 0.809 0.868 0.849 0.875 0.908 0.921 0.934
SelfRegulationSCP1 0.775 0.744 0.863 0.839 0.812 0.891 0.922 0.904 0.891 0.846 0.908
SelfRegulationSCP2 0.539 0.522 0.550 0.550 0.417 0.561 0.604 0.506 0.583 0.578 0.589
SpokenArabicDigits 0.963 0.982 0.983 0.973 0.969 0.995 0.998 0.991 0.992 0.995 0.997

StandWalkJump 0.200 0.333 0.400 0.400 0.333 0.333 0.400 0.400 0.467 0.533 0.533
UWaveGestureLibrary 0.903 0.903 0.903 0.897 0.772 0.891 0.913 0.925 0.816 0.875 0.919

Avg. Rank 9.1 7.7 6.7 6.3 8.3 6.3 5.1 5 5 4.3 2.1
Wins/Ties 2 2 3 5 2 2 7 6 3 3 14

when 𝑦𝑛 = 𝑓 (𝒙𝑛) and equal to 0 when 𝑦𝑛 ≠ 𝑓 (𝒙𝑛). Table 1 shows
the experimental results, with the summarized information listed
in the bottom two lines. Note that the best performance for each
dataset is highlighted in bold.

First, it is clear that among all the competitors, WHEN achieves
the best performance in terms of both the largest number of wins
(the best in 14 out of 30 datasets) and the highest average rank (2.1).
The rank index indicates even for the cases where our model is not
the best, its performances are still very competitive.

Second, the two variants of WHEN also have competitive per-
formances. They are the second and the third best in terms of the
average rank. The results verify the advantage of the proposed
WaveAtt and DTWAtt structures, and as an ablation study, explain
why the two components are essential to the success of WHEN. It
seems that DTWAtt is more effective than WaveAtt. It is reason-
able because DTWAtt is designed to overcome the inter-sequence
asynchronism problem, which is more important than the intra-
sequence nonstationarity problem for the classification task.

Finally, the deep learning methods including WHEN, mWDN,
TST and TapNet have overall better performances. The reason
might be the representational learning ability of deep learning is

very suitable for feature extracting from high-dimensional large-
scale multivariate datasets.

We also give a Nemenyi test for the experiment results in Fig. 6.
On the Nemenyi critical difference diagrams, two methods have
statistically significant difference if the difference between their
average ranks is larger than critical difference (the line segment
with “CD” on the top left corner of the diagrams). Models that
are connected by a bold line do not have statistically significant
difference. The performance of WHEN is significantly better than
the no-WHEN baselines with a 5% significance level.

5.2 Task II: Time Series Forecasting
In the forecasting task, we use the fragments of time series in a
sliding window 𝑡 − 𝑁 to 𝑡 as inputs of our model to forecast the
value of the time series from 𝑡 + 1 to future several time steps.

5.2.1 Datasets. In the experiments, we compare our model with
the baselines over three real-world multivariate time series datasets.
All of the three datasets are publicly available.
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Figure 6: Critical difference diagram of the TSC experiments.
Blue lines correspond to WHEN and its variants. Red lines
correspond to deep learning baselines. Orange lines corre-
spond to traditional baselines.

• Temperature: This dataset contains time series of monthly
average temperature of all 50 US states from Jan. 2000 to Aug.
20131. It is a 50 dimensional time series with a length of 164.

• AQI (Air Quality Indexes): This dataset contains time series of
daily air quality indexes collected from 1 Jan. 2014 to 1 Dec. 2021 in
the Shanghai city of China2. The dataset has 6 features including
PM2.5, PM10, O3, NO2, SO2, CO. It is a 6 dimensional time series
with a length of 2815.

• Traffic: This dataset contains the time series of traffic speeds of
214 road segments in the Guangzhou city of China in Aug. 2016 [13].
The traffic speeds are collected every 10 minutes. It is a 214 dimen-
sional time series with a length of 4464.

In the experiments of AQI and Traffic, we set the sliding window
size to 100, and use our model to forecast the next 1, 5, 10 steps.
Since the sampling time period in Temperature dataset is much
longer, we use the data of the last 50 months to predict the future
1, 3 and 5 months. We set the first 8:1:1 of the datasets as training,
validation, and test sets, respectively.

5.2.2 Baselines. We consider the following eight baseline methods:
• ARIMA [27]: ARIMA is a classic time series analysis model

that combines an autoregressive (AR) and a moving average (MA)
processes for forecasting. ARIMA contains an initial differencing
in the “integrated” part to eliminate the nonstationarity in mean of
time series. In ARIMA, we treat the multivariate data as multiple
univariate time series for forecasting.

• FC-LSTM [58]: FC-LSTM is a basic sequence to sequence model
that forecasts time series with a LSTM layer and fully connected
layer.

• NRDE [44]: We select NRDE as a representative neural differ-
ential equation based method, which applies rough path theory to
improve neural controlled differential equations [35] in long time
series.

• STRIPE++ [38]: To produce plausible and diverse time series
predictions for nonstationary time series, STRIPE++ also applies
DTW algorithm [36] for forecasting. We select STRIPE++ as a rep-
resentative method for DTW related methods [16, 36–39].

• ESG [66]: Recently, Graph neural network based methods be-
comes popular in time series forecasting [11, 14, 53, 54, 66], where
the graph network is used to model the relationship among graph
nodes. We select ESG as a representative method that considers the
multi-scale interactions of time series.
1https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
2https://aqicn.org/data-platform/

• GTS [53]: GTS is another representative graph method that
forecasting time series without given graph.

• TST [68]: We select TST as a representative transformer based
time series forecasting method.

• mWDN [65]: mWDN adopts a multilevel wavelet decomposi-
tion network to extract frequency components from time series,
and feeds the frequency components into a group of LSTM net-
works for forecasting. We select mWDN as a baseline as it is the
state-of-the-art method that has a similar idea with the WaveAtt
component of our model, i.e., using wavelet method to extract fre-
quency component from time series.

We also adopt the two variants of WHEN, i.e., WaveAtt and
DTWAtt, as baselines.

5.2.3 Results and Analysis. We use the Root Mean Square Error
(RMSE) as a metric to evaluate the model performance in time series
forecasting, which is defined as: RMSE =

√︃
1
𝑇

1
𝐾

∑𝑇
𝑡=1 ∥�̂�𝑡 − 𝒚𝑡 ∥2,

where ∥ · ∥ is the 𝑙-2 norm, 𝒚𝑡 is the actual value at step 𝑡 in test
set, �̂�𝑡 is the predicted value and 𝐾 is the dimension of 𝒚𝑡 .

Table 2 presents the results of all the methods, where P1, P3, P5,
P10 denote the performance of forecasting at the next 1, 3, 5, 10
steps, respectively. First, as shown in the table, the WHEN model
achieves the best performance compared with the baselines, indi-
cating the effectiveness of our model. Second, as an ablation study
of our model, we observe that the WaveAtt and DTWAtt modules
both contribute to the performance ofWHEN. Specifically, WaveAtt
is more effective than DTWAtt, which indicates the importance of
frequency analysis in time series forecasting. It is also supported
by the fact that the models using frequency analysis of wavelet
functions, i.e., WHEN, WaveAtt and mWDN, have better perfor-
mances than other baselines. Third, all deep learning methods work
better than the ARIMA method, since ARIMA can only handle the
nonstationarity in the sense of mean, but the nonstationarity in
real-world time series is indeed much more complex.

5.3 Exploratory Analysis
Here, we illustrate how WaveAtt and DTWAtt work in the model
via exploratory analysis.

5.3.1 Data-Dependent Frequencies Extraction. The data- dependent
frequency analysis is an important feature of our model. In the
WaveAtt module, the frequency band 1/𝛼 in the data-dependent
wavelet function (Eq. (5)) is controlled by the input sequence 𝝇𝑖 .
We demonstrate this mechanism in Fig. 7. Here, Fig. 7(c) shows the
input time series 𝝇 of the WaveAtt module, which is selected from
the Heartbeat dataset of UEA archive. Fig. 7(a) and Fig. 7(b) visualize
the data-dependent frequency band sequences, i.e., 1/𝛼 (𝝇𝑖 ), of the
data-dependent wavelet function based on Complex Gaussian 1
and Daubechies 2 mother functions [43].

As the figure shows, there are three low frequency ranges with
high amplitude: around time step 10, 80 and 175, which are shown
in the dashed line blocks. Accordingly, the frequency curves in
Fig. 7(a) and Fig. 7(b) also reach their bottoms at close time steps.
The observation indicates that WaveAtt can dynamically change
its frequency bands with input data and extract suitable frequency
components of the input time series. Moreover, the frequency com-
ponents extracted by different Wavelet families are different. In
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Table 2: Performance comparison in the time series forecasting task.

Datasets Forecasting ARIMA FC- NRDE STRIPE++ ESG TST GTS mWDN WaveAtt DTWAtt WHENtime period LSTM

Temperature
P1 0.338 0.298 0.276 0.279 0.245 0.265 0.256 0.247 0.254 0.238 0.236
P3 0.491 0.329 0.278 0.287 0.263 0.269 0.264 0.264 0.258 0.263 0.249
P5 0.555 0.334 0.287 0.300 0.265 0.286 0.275 0.271 0.267 0.273 0.268

AQI
P1 0.092 0.087 0.080 0.084 0.083 0.082 0.083 0.081 0.080 0.080 0.078
P5 0.104 0.092 0.088 0.091 0.087 0.088 0.091 0.089 0.085 0.090 0.084
P10 0.121 0.097 0.094 0.095 0.092 0.092 0.094 0.095 0.092 0.091 0.090

Traffic
P1 0.114 0.120 0.118 0.108 0.102 0.108 0.105 0.107 0.105 0.107 0.105
P5 0.127 0.129 0.120 0.122 0.113 0.113 0.114 0.114 0.114 0.119 0.110
P10 0.152 0.140 0.124 0.125 0.119 0.127 0.129 0.118 0.115 0.126 0.112

Avg. Rank 10.7 10.2 6.8 8.4 3.3 5.9 6.3 5.2 3.1 4.7 1.4
Wins/Ties 0 0 0 0 2 0 0 0 0 0 7

(c) BiLSTM representation sequence

(b) db2

(a) cgau1

Figure 7: Data-dependent frequencies extracted by different
wavelet families. (a) and (b): The frequencies extracted by
Complex Gaussian 1 wavelet and Daubechies 2 wavelet. (c):
The BiLSTM representation sequence 𝑺 of a sample.

Figure 8: Direct and warping distance comparison among
different samples.

general, the frequency bands in Fig. 7 (b) are higher than that in
Fig. 7(a), indicating that the multiple wavelet families mechanism
in WaveAtt indeed provides frequency components diversity to
our model. For real-life time series containing multiple frequency
components, our model can use different wavelet families to cover
their frequency bands.

5.3.2 Warping Distance Comparison in DTW Attention. In Fig. 8,
we demonstrate the nature of DTWAtt using an example of warping
distance comparison in the DTW attention. As the figure shows,
there are three series samples selected from the Heartbeat dataset.
Here, 𝑆𝑎𝑚𝑝𝑙𝑒1 is with the label1 while 𝑆𝑎𝑚𝑝𝑙𝑒2 and 𝑆𝑎𝑚𝑝𝑙𝑒3 are
with the same label2. If we directly compare the distance among
the three samples, the distance of 𝑆𝑎𝑚𝑝𝑙𝑒2 to 𝑆𝑎𝑚𝑝𝑙𝑒1 is smaller
than that of 𝑆𝑎𝑚𝑝𝑙𝑒2 to 𝑆𝑎𝑚𝑝𝑙𝑒3 (i.e., 8.1<16.1). The phase drift
between 𝑆𝑎𝑚𝑝𝑙𝑒2 and 𝑆𝑎𝑚𝑝𝑙𝑒3 causes a large distance between the
samples with the same label.

In DTWAtt, this problem is solved through introducing an aux-
iliary universal feature sequence 𝑼 . As the figure shows, instead
of comparing the distance between samples directly, DTWAtt cal-
culates the warping distances of the samples with the sequence 𝑼 .
We can see after adjusting the phase drift of sequences by the DTW
attention, the distance between 𝑆𝑎𝑚𝑝𝑙𝑒2 and 𝑆𝑎𝑚𝑝𝑙𝑒3 (in fact, it is
the distance of 𝑆𝑎𝑚𝑝𝑙𝑒2 → 𝑼 → 𝑆𝑎𝑚𝑝𝑙𝑒3) is much smaller than
that between 𝑆𝑎𝑚𝑝𝑙𝑒2 and 𝑆𝑎𝑚𝑝𝑙𝑒1 (i.e., 3.1≪15.6). This indicates
DTWAtt is very useful to handle the asynchronism in multiple time
series due to irregular sampling rate and the phase drift.

6 CONCLUSIONS
In this paper, we aim to build a deep learning model for nonsta-
tionary and asynchronous time series analysis. We designed two
types of attentions combined with task-dependent neural networks
constitute the novel WHEN model for both time series classifi-
cation and forecasting tasks. Extensive experiments on abundant
real-world datasets demonstrated the superiority of our model to
numerous competitors.
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Table 3: Pairwise statistical significance and comparison of the TSC task with Wilcoxon signed rank test.

𝑝-value WHEN DTWAtt WaveAtt TST MINI mWDN CMFMTS LCEM TapNet WEASEL DTWDROCKET +RF +MUSE

WHEN - 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
DTWAtt 0.000 - 0.148 0.414 0.145 0.024 0.000 0.040 0.000 0.000 0.000
WaveAtt 0.000 0.148 - 0.895 0.473 0.046 0.001 0.067 0.000 0.003 0.000

MINIROCKET 0.001 0.414 0.895 - 0.713 0.086 0.000 0.137 0.003 0.000 0.000
TST 0.001 0.145 0.473 0.713 - 0.062 0.004 0.313 0.073 0.021 0.000

mWDN 0.000 0.024 0.046 0.086 0.062 - 0.024 0.804 0.269 0.060 0.000
CMFMTS+RF 0.000 0.000 0.001 0.000 0.004 0.024 - 0.144 0.116 0.284 0.274

LCEM 0.000 0.040 0.067 0.137 0.313 0.804 0.144 - 0.467 0.069 0.011
TapNet 0.000 0.000 0.000 0.003 0.073 0.269 0.116 0.467 - 0.181 0.000

WEASEL+MUSE 0.000 0.000 0.003 0.000 0.021 0.060 0.284 0.069 0.181 - 0.018
DTWD 0.000 0.000 0.000 0.000 0.000 0.000 0.274 0.011 0.000 0.018 -
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Figure 9: Parameter sensitivity on LSST dataset.

A SUPPLEMENTAL MATERIALS
A.1 Derivatives Calculating
In DTWAtt, we implement the DTW algorithm as a neural attention
network form. As we mentioned in the main body, the DTW atten-
tion is derivable and therefore could be trained in the BP algorithm.
DTWAtt has the input 𝑽 , output 𝑩 and learnable parameter 𝑼 . Here,
we illustrate that 𝑩 is differentiable with respect to 𝑽 and 𝑼 . This is
equal to the statement that 𝑏𝑖 is differentiable with respect to each
component 𝑣 (𝑘 )

𝑖+𝑡 and 𝑢 (𝑘 )
𝑖+𝑡 in 𝑽𝑖 and 𝑼𝑖 .

We first give the derivative of 𝑣 (𝑘 )
𝑖+𝑡 as

𝜕𝑏𝑖

𝜕𝑣
(𝑘 )
𝑖+𝑡

=

𝐺∑︁
𝑔=1

𝜕ATT
(
𝑑𝑔

)
𝜕𝑣

(𝑘 )
𝑖+𝑡

𝑑𝑔 + ATT
(
𝑑𝑔

) 𝜕𝑑𝑔

𝜕𝑣
(𝑘 )
𝑖+𝑡

=

𝐺∑︁
𝑔=1

𝜕𝑑𝑔

𝜕𝑣
(𝑘 )
𝑖+𝑡

𝜕ATT
(
𝑑𝑔

)
𝜕𝑑𝑔

𝑑𝑔 + ATT
(
𝑑𝑔

) 𝜕𝑑𝑔

𝜕𝑣
(𝑘 )
𝑖+𝑡

, (14)

where 𝜕ATT
(
𝑑𝑔

)
/𝜕𝑑𝑔 can be calculated, thus 𝜕𝑏𝑖/𝜕𝑣 (𝑘 )𝑖+𝑡 exists if

𝜕𝑑𝑔 (𝑽𝑖 , 𝑼𝑖 )/𝜕𝑣 (𝑘 )𝑖+𝑡 exists.
In Eq. (14), 𝑑𝑔 can be denoted as the sum of the 𝑙-2 norms, i.e.,

𝑑𝑔 (𝑽𝑖 , 𝑼𝑖 ) =
𝑍∑︁
𝑧=1

𝒗𝑖+𝑝𝑧 − 𝒖𝑖+𝑞𝑧
 , (15)

where the choices of vector pairs {𝒗𝑝𝑧 , 𝒖𝑞𝑧 }, 𝑧 ∈ Z+ are determined
by the details of 𝑔-th warping path. Concretely, we can denote 𝑑𝑔
in another form which considers the vector pairs by a constant 𝛿 as

𝑑𝑔 (𝑽𝑖 , 𝑼𝑖 ) =
𝐿∑︁

𝑝,𝑞=0
𝛿𝑝,𝑞

𝒗𝑖+𝑝 − 𝒖𝑖+𝑞
 , (16)

where 𝛿𝑝,𝑞 is 0 or 1, based on the form of 𝑔-th path. 𝛿𝑝,𝑞 equals
1 if and only if the vector pair {𝒗𝑖+𝑝 , 𝒖𝑖+𝑞} is contained in the
warping path. Since 𝑙-2 norm is differentiable and the derivative of
constant 𝛿𝑝,𝑞 is always 0, 𝜕𝑑𝑔 (𝑽𝑖 , 𝑼𝑖 )/𝜕𝑣 (𝑘 )𝑖+𝑡 exists for each 𝑔, 𝑖 , 𝑘
and 𝑡 . Thus 𝜕𝑏𝑖/𝜕𝑣 (𝑘 )𝑖+𝑡 exists. The existence for derivative 𝜕𝑏𝑖/𝜕𝑢 (𝑘 )𝑖+𝑡
can be calculated in the same method.

A.2 Parameter Sensitivity
In our model, there are several parameters to tune. Fig. 9 reports
the sensitivity of the classification accuracy to these parameters on
the LSST dataset. We also incorporate the best no-WHEN baseline
MINIROCKET on LSST dataset, which is the best method in the
baselines, for comparison.

Here, we vary the number of four key parameters, which are the
number of DTWAtt sliding window length 𝐿𝐷 + 1 in the set {3, 4,
5, 6, 7}, the number of WaveAtt sliding window size 2𝐿 + 1 in the
set {11, 13, 15, 17}, the number of used wavelet families Γ in the set
{9, 12, 15, 18, 21} and the dimension number of DTWAtt 𝑽 , i.e., 𝐾𝑉 ,
in the set {24, 28, 32, 36, 40}. As shown in the figures, our model is
relatively stable and consistently competitive to the MINIROCKET
baseline when we vary the four parameters. The sensitivities of
other parameters are similar for the four parameters.

For TSF task, Fig. 10 reports the sensitivity of the RMSE to these
parameters on the AQI dataset when forecasting the next 5 steps.
We also incorporate the best no-WHEN baseline ESG, which is the
best method in the baselines, for comparison. The key parameter
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Table 4: Notations, explanations, and configurations in our experiments.

Part Notation Explanation Configuration

WaveAtt

𝑿 ∈ R𝐾𝑋 ×𝐼 Time series input. 𝐾𝑋 , 𝐼 depend on datasets.
𝑺 ∈ R𝐾𝑆×𝐼 BiLSTM representation sequence. 𝐾𝑆 = min(192, 2 × 𝐾𝑋 )
𝝇𝑖 ∈ R𝐾𝑆×(2𝐿+1) BiLSTM representation sub-sequence in sliding window. 2𝐿 + 1 = 15
𝒘 ∈ R2𝐿+2 The parameters to calculate 𝛼 in WaveAtt. See above
W ∈ R(2𝐿+2)×𝐾𝑆×Γ The parameters in different dimensions and Wavelet families. Γ = 18
R ∈ R𝐾𝑆×Γ×𝐼 Frequency components sequence. See above

DTWAtt

𝑽 ∈ R𝐾𝑉 ×𝐼 Vector sequence for time series classification & forecasting. 𝐾𝑉 = 32 or 128
𝑽𝑖 ∈ R𝐾𝑉 ×(𝐿𝐷+1) Vector sequence in sliding window. 𝐿𝐷 + 1 = 4
U ∈ R𝑁×𝐾𝑉 ×𝐼 The multi-head parameter sequence in DTWAtt. 𝑁 = 5
𝑼𝑖 ∈ R𝐾𝑉 ×(𝐿𝐷+1) Parameter sequence for one head in sliding window. See above
𝒅 (𝑽𝑖 , 𝑼𝑖 ) ∈ R𝐺 Distance vector of all warping paths. 𝐺 = 9
𝑩 ∈ R𝑁×𝐼 Attentive distance sequence. See above
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Figure 10: Parameter sensitivity on AQI dataset.

settings are similar to the experiments in TSC task. As shown in the
figures, our model is relatively stable and consistently competitive
to the ESG baseline when we vary the four parameters.

A.3 Additional Comparison Results
We also conduct a two-sided Wilcoxon signed rank test [9] for the
TSC task as shown in Table 3. The 𝑝-value, indicating the statistical
significance of the test, is reported in the table. Our results show
that WHEN has a significant difference compared to the baselines,
indicating its effectiveness in TSC task.

To enhance the demonstration of WHEN’s performance, we
present pairwise plot in Fig. 11, illustrating the win/tie/loss counts
between WHEN and MINIROCKET. Each point on the plot repre-
sents the accuracy value of the two methods on a specific dataset.
The dotted lines indicate ±5% intervals around the classification ac-
curacy. Our results indicate that WHEN outperforms MINIROCKET
on several datasets, while MINIROCKET performs better on some
others. The pairwise plot provides valuable insights into the strengths
and weaknesses of both methods.

A.4 Experiment Configuration
Table 4 lists the notations of the hyper-parameter of our model.
We organize the notations in two groups, namely WaveAtt and
DTWAtt. The last column presents the parameter configurations
which leads to the reported experimental results in our paper.

Our software environment contains ubuntu 16.04, Pytorch v1.6.0
and python 3.6.12. All of the experiments are conducted on a ma-
chine with four GPUs (NVIDIA GeForce GTX 1080 Ti * 4), one CPU
(Inter i7 6700k) and 32G memory.
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